Jacobi sums over finite fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pure Gauss Sums over Finite Fields

New classes of pairs e,p are presented for which the Gauss sums corresponding to characters of order e over finite fields of characteristic p are pure, i.e., have a real power. Certain pure Gauss sums are explicitly evaluated. §

متن کامل

Power sums over subspaces of finite fields

Article history: Received 31 August 2011 Revised 16 December 2011 Accepted 11 April 2012 Available online 25 April 2012 Communicated by L. Storme MSC: 05B25 11T24 11T71

متن کامل

T-adic Exponential Sums over Finite Fields

T -adic exponential sums associated to a Laurent polynomial f are introduced. They interpolate all classical p-power order exponential sums associated to f . The Hodge bound for the Newton polygon of L-functions of T -adic exponential sums is established. This bound enables us to determine, for all m, the Newton polygons of Lfunctions of p-power order exponential sums associated to an f which i...

متن کامل

Number of Jacobi quartic curves over finite fields

In this paper the number of Fq-isomorphism classes of Jacobi quartic curves, i.e., the number of Jacobi quartic curves with distinct jinvariants, over finite field Fq is enumerated.

متن کامل

L-functions of Exponential Sums over Finite Fields

Let F q be the finite field of q elements with characteristic p and F q m its extension of degree m. Fix a nontrivial additive character ψ of F p. For any Laurent polynomial −1 n ], we form the exponential sum S * m (f) := The corresponding L-function L * (f, t) is defined by L * (f, t) := exp (∞ ∑ m=0 S * m (f) t m m). The corresponding L-function L(f, t) is defined as follows L(f, t) := exp (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2002

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa102-1-1